REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for the callection of information is estimated to average 1 hour per responsa, Including the time for reviewing instructions, searching existing data sources‘
gathering and maintaining the data needed, and complating and reviewing the collection of Information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jeiterson
Davis Highway, Sute 1284, Arlington, VA 222024302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503

2. REPORT DATE

1. AGENCY USE ONLY (Leave blank)
' 6/30/97

3. REPORT TYPE AND DATES COVERED
Performance (Technical) 6/1/96-5/31/97

4, TITLE AND SUBTITLE

Embedded Systems

Algorithms and Tools for the Automatic Analysis of

5. FUNDING NUMEERS

N00014-96-1-0883

6. AUTHOR(S)

T. A. Henzinger

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

University of California
Berkeley, CA 94720

8. PERFORMING ORGANIZATION
REPORT NUMBER

442427-23113

9. SPNSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Office of Naval Research

Ballston Centre Tower One
800 North Quincy Street
Arlington, VA 22217-5660

10. SPONSORING /MONITORING
AGENCY

Office of Naval Research
Seattle Regional Office

11. SUPPLEMENTARY NOTES

n/a

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for Public Release

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

checker HyTech.

Over the past year, we developed and implemented new and improved formalisms and
algorithms for the timing analysis and the analysis of environment interactions of embedded
systems. Highlights include the first model-checking algorithm for timing constraints that
is both on-the-fly and space-optimal; an extension of the formalism of timed and hybrid
automata that enables modular design, specification, and analysis of embedded systems; an
algorithm for the automatic synthesis of sampling controllers for continuous-time plants;
and the automatic analysis of the steam-boiler benchmark case study with our model

9970626 039

14. SUBJECT TERMS

Model checking of timed and hybrid systmes

6

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

NSN 7540-01-280-5500

i

LT SN
b Senn NGt

PR SRR NRNIC

Standard Form 298 (890104 Draft)
Prescribed by ANSI Std.239-18 298-01

ONR Grant No. N00014-96-1-0883
Algorithms and Tools for the Automatic Analysis of Embedded Systems
Thomas A. Henzinger, Principal Investigator

Annual Progress Report
Period covered: 6/1/96 - 5/31/97

We made progress in the following three directions:

A We developed improved formalisms and algorithms for the verification of real-time
systems, which are digital systems whose state changes occur in real time’

B We developed improved algorithms for the verification of hybrid systems, which are
digital systems that interact with analog environments in real time

C We implemented the verification algorithms from A and B in our tool HyTech
Each of these three directions is now described in more detail.

A Algorithms for the Verification of Real-time Systems

The formalism of Timed Automata is rapidly becoming the formal model of choice for the
automatic analysis of timing constraints. We developed the first model-checking algorithm
for timed automata that is both on-the-fly (it explores only reachable states) and space-
optimal (it uses as little memory as possible) [A.1]. This led us to show how widely
available model checkers for untimed systems can be used to check timing constraints
[A.2]. The formalism of timed automata has two undesirable features. First, it is too
"exact", by mathematically allowing timing constraints that cannot be realized physically
(such as the constraint that an event must happen exactly at time pi). Second, it does not
admit the modular and hierarchical construction of complex systems from components. We
remedied the first deficiency by identifying closely related timing behaviors [A.3], and we
remedied the second deficiency by introducing a modular extension of timed automata
[A.4].

A.1 Thomas A. Henzinger, Orna Kupferman, Moshe Y. Vardi, "A space-efficient on-the-
fly algorithm for real-time model checking", Proceedings of the Seventh International
Conference on Concurrency Theory (CONCUR 96), Lecture Notes in Computer Science
1119, Springer-Verlag, 1996, pp. 514-529. Invited to a special issue of Theoretical
Computer Science for CONCUR 96.

Abstract:

In temporal-logic model checking, we verify the correctness of a program with respect to a
desired behavior by checking whether a structure that models the program satisfies a
temporal-logic formula that specifies the behavior. The main practical limitation of model
checking is caused by the size of the state space of the program, which grows exponentially
with the number of concurrent components. This problem, known as the state-explosion
problem, becomes more difficult when we consider real-time model checking, where the
program and the specification involve quantitative references to time. In particular, when
use timed automata to describe real-time programs and we specify timed behaviors in the
logic TCTL, a real-time extension of the temporal logic CTL with clock variables, then the
state space under consideration grows exponentially not only with the number of

concurrent components, but also with the number of clocks and the length of the clock
constraints used in the program and the specification. Two powerful methods for coping
with the state-explosion problem are on-the-fly and space-efficient model checking. In on-
the-fly model checking, we explore only the portion of the state space of the program
whose exploration is essential for determining the satisfaction of the specification. In
space-efficient model checking, we store in memory the minimal information required,
preferring to spend time on reconstructing information rather than spend space on storing
it. In this work we develop an automata-theoretic approach to TCTL model checking that
combines both methods. We suggest, for the first time, a PSPACE on-the-fly model-
checking algorithm for TCTL. .

A.2 Thomas A. Henzinger, Orna Kupferman, "From quantity to quality”, Proceedings of
the First International Workshop on Hybrid and Real-time Systems (HART 97), Lecture
Notes in Computer Science 1201, Springer-Verlag, 1997, pp. 48-62.

Abstract:

In temporal-logic model checking, we verify the correctness of a program with respect to a
desired behavior by checking whether a structure that models the program satisfies a
temporal-logic formula that specifies the behavior. The model-checking problem for the
branching-time temporal logic CTL can be solved in linear running time, and model-
checking tools for CTL are used successfully in industrial applications. The development
of programs that must meet rigid real-time constraints has brought with it a need for real-
time temporal logics that enable quantitative reference to time. Early research on real-time
temporal logics uses the discrete domain of the integers to model time. Present research on
real-time temporal logics focuses on continuous time and uses the dense domain of the reals
to model time. There, model checking becomes significantly more complicated. For
example, the model-checking problem for TCTL, a continuous-time extension of the logic
CTL, is PSPACE-complete.

In this paper we suggest a reduction from TCTL model checking to CTL model checking.
The contribution of such a reduction is twofold. Theoretically, while it has long been
known that model-checking methods for untimed temporal logics can be extended quite
easily to handle discrete time, it was not clear whether and how untimed methods can
handle the reset quantifier of TCTL, which resets a real-valued clock. Practically, our
reduction enables anyone who has a tool for CTL model checking to use it for TCTL model
checking. The TCTL model-checking algorithm that follows from our reduction is in
PSPACE, matching the known bound for this problem. In addition, it enjoys the wide
distribution of CTL model-checking tools and the extensive and fruitful research efforts and
heuristics that have been put into these tools.

A.3 Vineet Gupta, Thomas A. Henzinger, Radha Jagadeesan, "Robust timed automata”,
Proceedings of the First International Workshop on Hybrid and Real-time Systems (HART
97), Lecture Notes in Computer Science 1201, Springer-Verlag, 1997, pp. 331-345.

Abstract:

We define robust timed automata, which are timed automata that accept all trajectories
"robustly": if a robust timed automaton accepts a trajectory, then it must accept neighboring
trajectories also; and if a robust timed automaton rejects a trajectory, then it must reject
neighboring trajectories also. We show that the emptiness problem for robust timed
automata is still decidable, by modifying the region construction for timed automata. We
then show that, like timed automata, robust timed automata cannot be determinized. This
result is somewhat unexpected, given that in temporal logic, the removal of real-time

equality constraints is known to lead to a decidable theory that is closed under all boolean
operations.

A.4 Rajeev Alur, Thomas A. Henzinger, "Modularity for timed and hybrid systems", to
appear in the Proceedings of the 8th International Conference on Concurrency Theory
(CONCUR 97), Lecture Notes in Computer Science, Springer-Verlag, 1997.

Abstract:

In a trace-based world, the modular specification, verification, and control of live systems
require each module to be receptive; that is, each module must be able to meet its liveness
assumptions no matter how the other modules behave. For example, physical realizability,
assume-guarantee reasoning about live trace inclusion, and controller synthesis for live
trace inclusion all depend on the receptiveness condition. In a real-time world, liveness is
automatically present in the form of diverging time. The receptiveness condition, then,
translates to the requirement that a module must be able to let time diverge no matter how
the environment behaves. We study the receptiveness condition for real-time systems by
extending the model of Reactive Modules to timed and hybrid modules. We define the
receptiveness of such a module as the existence of a winning strategy in a game of the
module against its environment. By solving the game on region graphs, we present an
(optimal) EXPTIME algorithm for checking the receptiveness of propositional timed
modules. By giving a fixpoint characterization of the game, we present a symbolic
procedure for checking the receptiveness of linear hybrid modules. Finally, we present an
assume-guarantee principle for reasoning about timed and hybrid modules, and a method
for synthesizing receptive controllers of timed and hybrid modules.

B Algorithms for the Verification of Hybrid Systems

Our mathematical model for embedded systems is that of Hybrid Automata, an extension of
timed automata that combines the discrete aspects of digital controllers with the continuous
aspects of analog environments. We classified hybrid automata as to whether they admit
finite-state abstractions of the infinite state spaces traversed by mixed discrete-continuous
behavior [B.1]. This classification gives rise to uniform and improved verification
algorithms [B.2]. Under the assumption that all control decisions are taken at integer
points in time, a richer class of properties can be verified automatically than in the case of
continuous control [B.3]. Much of this work is summed up in the PhD thesis of Peter
Kopke, who was supported by this grant [B.4].

B.1 Thomas A. Henzinger, Peter W. Kopke, "State equivalences for rectangular hybrid
automata," Proceedings of the Seventh International Conference on Concurrency Theory
(CONCUR 96), Lecture Notes in Computer Science 1119, Springer-Verlag, 1996, pp.
530-545. Invited to a special issue of Theoretical Computer Science for CONCUR 96.

Abstract:

Three natural equivalence relations on the infinite state space of a hybrid automaton are
language equivalence, simulation equivalence, and bisimulation equivalence. When one of
these equivalence relations has a finite quotient, certain model checking and controller
synthesis problems are decidable. When bounds on the number of equivalence classes are
obtained, bounds on the running times of model checking and synthesis algorithms follow
as corollaries. With a finite bisimulation equivalence quotient, results apply to branching
temporal logic; with a finite simulation equivalence quotient, results apply to the universal

fragment of branching temporal logic; with a finite language equivalence quotient, results
apply to linear temporal logic.

We characterize the time-abstract versions of these equivalence relations on the state spaces
of Rectangular Hybrid Automata (RHA), in which each continuous variable is a clock with
bounded drift. These automata are useful for modeling communications protocols with
drifting local clocks, and for the conservative approximation of more complex hybrid
systems. Of our two main results, one has positive implications for automatic verification,
and the other has negative implications. On the positive side, we find that the (finite)
language equivalence quotient for RHA is coarser than was previously known by a
multiplicative exponential factor. On the negative side, we show that simulation
equivalence for RHA is equality (which obviously has an infinite quotient).

B.2 Thomas A. Henzinger, "The theory of hybrid automata," Proceedings of the 11th
Annual Symposium on Logic in Computer Science (LICS 96), IEEE Computer Society
Press, 1996, pp. 278-292.

Abstract:

We summarize several recent results about hybrid automata. Hybrid automata, which
combine discrete transition graphs with continuous dynamical systems, are mathematical
models for digital systems that interact with analog environments. Hybrid automata can be
viewed as infinite-state transition systems, and this view gives insights into the structure of
hybrid state spaces. For example, for certain interesting classes of hybrid automata,
language equivalence, mutual similarity, or bisimilarity induce finite quotients of infinite
state spaces. These results can be exploited by analysis techniques for finite-state systems.
Our goal is to demonstrate that concepts from the theory of discrete concurrent systems can
give insights into partly continuous systems, and that methods for the verification of finite-
state systems can be used to analyze certain systems with uncountable state spaces.

B.3 Thomas A. Henzinger, Peter W. Kopke,"Discrete-time control for rectangular hybrid
automata”, to appear in the Proceedings of the 24th International Colloquium on Automata,
Languages, and Programming (ICALP 97), Lecture Notes in Computer Science, Springer-
Verlag, 1997.

Abstract:

Rectangular hybrid automata model digital control programs of analog plant environments.
We study rectangular hybrid automata where the plant state evolves continuously in real-
numbered time, and the controller samples the plant state and changes the control state
discretely, only at the integer points in time. We prove that rectangular hybrid automata
have finite bisimilarity quotients when all control transitions happen at integer times,even if
the constraints on the derivatives of the variables vary between control states. This is
sharply in contrast with the conventional model where control transitions may happen at
any real time, and already the reachability problem is undecidable. Based on the finite
bisimilarity quotients, we give an exponential algorithm for the symbolic sampling-
controller synthesis of rectangular automata. We show our algorithm to be optimal by
proving the problem to be EXPTIME-hard. We also show that rectangular automata form a
maximal class of systems for which the sampling-controller synthesis problem can be
solved algorithmically.

B.4 Peter W. Kopke, "The Theory of Rectangular Hybrid Automata", PhD thesis,
Technical Report CSD-TR96-1601, Cornell University, August 1996, 195 pages.

Abstract:

A hybrid automaton consists of a finite automaton interacting with a dynamical system.
Hybrid automata are used to model embedded controllers and other systems that consist of
interacting discrete and continuous components. A hybrid automaton is rectangular if each
of its continuous variables x satisfies a nondeterministic differential equation of the form
a<dx/dt<b, where a and b are rational constants. Rectangular hybrid automata are useful
for the analysis of communication protocols in which local clocks have bounded drift, and
for the conservative approximation of systems with more complex continuous behavior.

We examine several verification problems on the class of rectangular hybrid automata,
including reachability, temporal-logic model checking, and controller synthesis. Both
dense-time and discrete-time models are considered. We identify subclasses of rectangular
hybrid automata for which these problems are decidable and give complexity analyses. An
investigation of the structural properties of rectangular hybrid automata is undertaken. One
method for proving the decidability of verification problems on infinite-state systems is to
find finite quotient systems on which analysis can proceed. Three state-space equivalence
relations with strong connections to temporal logic are bisimilarity, similarity, and language
equivalence. We characterize the quotient spaces of rectangular hybrid automata with
respect to these equivalence relations.

C Implementation and Application of HyTech

Our tool for analyzing hybrid automata is the symbolic model checker HyTech. The
current release HyTech 1.04a is available at www.eecs.berkeley.edu/~tah. We have close
to 100 registered users, and some have begun to experiment with HyTech in industrial
application. For example, a group at BMW used HyTech to analyze the control of a
pneumatic automobile suspension system (see Hybrid and Real-time Systems, O. Maler,
ed., Springer-Verlag Lecture Notes in Computer Science 1201, 1997, page 139). Our
improvements and extensions of HyTech are driven by case studies that involve parameter-
synthesis tasks and nonlinear behavior. In particular, we succeeded in automatically
synthesizing the control parameters for a steam boiler control system [C.1]. For this
purpose, we used conservative linear approximations of the phase portrait for the nonlinear
behavior of the steam boiler [C.2]. The HyTech project, which was supported by this
grant, is summed up in [C.3].

C.1 Thomas A. Henzinger, Howard Wong-Toi, "Using HyTech to synthesize control
parameters for a steam boiler," Formal Methods for Industrial Applications: Specifying
and Programming the Steam Boiler Control (J.-R. Abrial, E. Borger, H. Langmaack,
eds.), Lecture Notes in Computer Science 1165, Springer-Verlag, 1996, pp. 265-282.

Abstract:

We model a steam-boiler control system using hybrid automata. We provide two
abstracted linear models of the nonlinear behavior of the boiler. For each model, we define
and verify a controller that maintains safe operation of the boiler. The less abstract model
permits the design of a more efficient controller. We also demonstrate how the tool
HyTech can be used to automatically synthesize control parameter constraints that guarantee
safety of the boiler.

C.2 Thomas A. Henzinger, Pei-Hsin Ho, Howard Wong-Toi, "Algorithmic analysis of
nonlinear hybrid systems", to appear in the IEEE Transactions on Automatic Control
(special issue on Hybrid Systems), 1997.

Abstract:

Hybrid systems are digital real-time systems that are embedded in analog environments.
Model-checking tools are available for the automatic analysis of linear hybrid automata,
whose environment variables are subject to piecewise-constant polyhedral differential
inclusions. In most embedded systems, however, the environment variables have
differential inclusions that vary with the values of the variables, dx/dt=x. Such inclusions
are prohibited in the linear hybrid automaton model. We present two methods for
translating nonlinear hybrid systems into linear hybrid automata. Properties of the
nonlinear systems can then be inferred from the automatic analysis of the translated linear
hybrid automata.

The first method, called clock translation, replaces constraints on nonlinear variables by
constraints on clock variables. The clock translation is efficient but has limited
applicability. The second method, called linear phase-portrait approximation,
conservatively overapproximates the phase portrait of a hybrid automaton using piecewise-
constant polyhedral differential inclusions. Both methods are sound for safety properties;
that is, if we establish a safety property of the translated linear system, we may conclude
that the original nonlinear system satisfies the property. When applicable, the clock
translation is also complete for safety properties; that is, the original system and the
translated system satisfy the same safety properties. The phase-portrait approximation
method is not complete for safety properties, but it is asymptotically complete; intuitively,
for every safety property, and for every relaxed nonlinear system arbitrarily close to the
original, if the relaxed system satisfies the safety property, then there is a linear phase-
portrait approximation that also satisfies the property.

We illustrate both methods by using HyTech--a symbolic model checker for linear hybrid
automata--to automatically check properties of a nonlinear temperature controller and of a
predator-prey ecology.

C.3 Thomas A. Henzinger, Pei-Hsin Ho, Howard Wong-Toi, "HyTech: a model checker
for hybrid systems", to appear in the Proceedings of the 9th International Conference on
Computer-aided Verification (CAV 97), Lecture Notes in Computer Science, Springer-
Verlag, 1997.

Abstract:

A hybrid system consists of a collection of digital programs that interact with each other
and with an analog environment. Examples of hybrid systems include medical equipment,
manufacturing controllers, automotive controllers, and robots. The formal analysis of the
mixed digital-analog nature of these systems requires a model that incorporates the discrete
behavior of computer programs with the continuous behavior of environment variables,
such as temperature and pressure. Hybrid Automata capture both types of behavior by
combining finite automata with differential inclusions (i.e. differential inequalities).
HyTech is a symbolic model checker for linear hybrid automata, an expressive, yet
automatically analyzable, subclass of hybrid automata. A key feature of HyTech is its
ability to perform parametric analysis, 1.e. to determine the values of design parameters for
which a linear hybrid automaton satisfies a temporal requirement.

